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Executive Summary 

Myths about learning and teaching maths continue 
to plague classroom practice despite consistent lack 
of evidence demonstrating positive outcomes for 
students. 

In this paper, leading education researchers Sarah 
Powell, Elizabeth Hughes and Corey Peltier debunk 
seven commonly-held myths about teaching maths 
– (1) conceptual then procedural understanding, (2) 
teaching algorithms is harmful, (3) inquiry learning 
is the best approach, (4) productive struggle is 
important, (5) growth mindset increases achievement, 

(6) executive function training is important, and (7) 
timed assessments cause mathematics anxiety. 

The authors explain how mathematics education 
can become more evidence-based, before providing 
a series of recommendations for improving maths 
teaching practices to best support student learning. As 
they conclude, we are doing a disservice to students 
when unsubstantiated practices are used in place of 
ones with substantial supporting evidence and greater 
likelihood of success. Sharing and following the 
educational science will mean more students succeed.
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Myths That Undermine 
Maths Teaching

Competency with mathematics is essential for success 
in school and career.1 2 That is, students who take 
and succeed in higher-level mathematics coursework 
are more likely to get into college,3 4 graduate from 
college,5 and earn more income as adults.6  The 
pathway for success with mathematics begins quite 
early in a student’s life, most often before a student 
starts formal schooling. Even before the age of 5, 
students perform differently on mathematics tasks,7 8 
and these differences in learning readiness contribute 
to some students experiencing more challenge 
learning mathematics as they begin formal schooling.9 
10

Mathematics builds in complexity; perhaps that is why 
early performance in mathematics relates to future 
performance. For example, mathematics at age 5 
predicts later mathematics performance through age 
1511 as mathematics at age 8 relates to mathematics 
performance at age 12.12 Furthermore, mathematics 
around ages 10-12 predicts mathematics 5 years 
later.13 These patterns show that when students 
succeed with mathematics at an earlier grade 
level, they continue to perform well in subsequent 
grade levels. But the opposite is also true - when 
students struggle with mathematics at an earlier 
grade level, they may continue to struggle with 
mathematics later on. For students with disabilities, 
mathematics performance is, on average, lower 
than students without disabilities.14 The difference 
in mathematics performance for students with 
and without disabilities widens from grade level to 
grade level,15 creating wider and wider disparities 
as students age.16 Fortunately, research shows that 
access to high-quality instruction and intervention 
can change trajectories of student outcomes across a 
school year.17 18 Therefore, high-quality mathematics 
instruction in schools is essential to alleviate the 
difficulties that many students face with mathematics.

The term ‘high-quality mathematics instruction’ could 
be interpreted in dozens of ways. In this paper, we 
propose that high-quality mathematics instruction 
should be instruction that is driven by evidence from 
clinical studies or school-based studies.19  Evidence 
is data, most often from students, teachers, or 
schools, that shows a practice contributes to increased 
mathematics knowledge.20 High-quality instruction 
should be based on current and comprehensive 
evidence rather than antiquated or unsubstantiated 
myths. Unfortunately, there are quite a few prevailing 
myths that are pervasive in conversations about the 
teaching of mathematics. We are doing a disservice 
to our students when these unsubstantiated practices 
are used in place of ones with substantial supporting 
evidence and greater likelihood of success. In this 

paper, we describe several prevalent myths and 
provide support to debunk them, in an effort to 
change conversations and teaching practices to best 
support student learning. 

Myth: Conceptual 
Then Procedural 
Understanding

Myth

One commonly-held myth amongst educators is 
that students should not be exposed to procedural 
instruction until they have demonstrated adequate 
conceptual understanding of specific mathematics 
content. Conceptual knowledge is an understanding of 
concepts (e.g., magnitude of numbers, regrouping), 
whereas procedural knowledge is often described as 
the steps necessary to solve a problem.21 This myth 
may come from pushback to procedural learning,22 
from resources that state conceptual knowledge 
should be developed prior to procedural knowledge,23 
or from descriptions of a concrete-representational-
abstract learning sequence in which the abstract 
learning is presented last.24 As noted by Rittle-Johnson 
et al,25 no empirical evidence supports claims about 
an instructional sequence (e.g., conceptual before 
procedural) that leads to improved student outcomes. 

Truth 

The truth is that conceptual knowledge and 
procedural knowledge work in tandem and are 
often intertwined.26 Conceptual knowledge supports 
procedural knowledge and procedural knowledge 
supports conceptual knowledge. As an example, 
in 1999 Rittle-Johnson and Alibali27 worked with 
elementary students on solving different types of 
equations. When provided with conceptual instruction, 
students demonstrated improved knowledge on 
measures of conceptual and procedural knowledge. 
When provided with procedural instruction, students 
showed improvement on conceptual and procedural 
measures. Although the authors determined a slight 
asymmetrical relationship between the influence 
of conceptual and procedural instruction, in 2015 
Rittle-Johnson et al.28 suggested both conceptual and 
procedural knowledge are necessary and “there is not 
an optimal ordering of instruction” (p. 595).

As described by Schneider et al.,29 there is a 
bidirectional relationship between conceptual and 
procedural knowledge. In a study focused on equation 
solving, Schneider and colleagues learned that 
conceptual knowledge and procedural knowledge both 
contribute to success with equation solving. These 
two types of knowledge overlap - that is, they are not 
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entirely separate constructs. The authors also learned 
that conceptual knowledge predicted later conceptual 
and procedural knowledge. In turn, earlier procedural 
knowledge predicted later conceptual and procedural 
knowledge. 

In Mathematics Teaching

To ensure development of conceptual and procedural 
knowledge in tandem, consider the following:

(1) Model and practise conceptual understanding as 
part of solving mathematics problems. For example, 
when teaching students to solve mathematics word 
problems, emphasise the structure or schema of the 
different word problems.30 These structures represent 
the conceptual underpinnings of the word problems 
(e.g., putting amounts together versus comparing 
amounts). Hands-on tools, drawings, and other 
representations can help students understand the 
concepts and distinguish among them. 

(2) Model and practise procedural understanding as 
part of solving mathematics problems. For example, 
provide step-by-step demonstrations of how to solve 
an addition, subtraction, multiplication, or division 
problem, how to find common denominators, or how 
to solve an algebraic equation.31 Procedures are often 
equated with algorithms, but procedural knowledge 
includes more than understanding and applying an 
algorithm.32

(3) Explicitly connect conceptual and procedural 
knowledge. Teaching these together can help 
strengthen the other over time.33 When connecting 
conceptual and procedural knowledge, monitor 
student learning and be aware of student limits on 
cognitive load and working memory. If using the 
concrete-representational-abstract in mathematics 
instruction, ensure it is interpreted as a framework 
(in which several components may be in use at any 
one time) instead of a sequence. As an example, if 
teaching about the Pythagorean theorem, an educator 
could use hands-on tools to have students create 
right triangles. The class could discuss the sides (a, 
b, c) and angles of the triangles and the relationships 
among a, b, and c. An educator would also introduce 
a formula (a2 + b2 = c2) and engage in modeling 
and practice about how to use the formula to solve 
for unknown quantities in problems. The conceptual 
knowledge helps students understand the properties 
of triangles and when to use the Pythagorean 
theorem, and the procedural knowledge assists with 
the solving of problems - both are necessary for 
success with such problems. 

Myth: Teaching 
Algorithms is Harmful

Myth

Another myth is that students should not be taught 
algorithms. An algorithm is a step-by-step procedure 
for solving a problem; often the term algorithm is 
applied to solving addition, subtraction, multiplication, 
and division problems beyond the mathematics facts. 
Algorithms would pertain to problems such as 145 
+ 98, 2,034 - 1,670, 78 × 42, or 1,200 ÷ 15. This 
myth may have developed based on a study in which 
authors suggested to “stop teaching the algorithms, 
and instead, encourage children to make the mental 
relationships necessary to build number sense”.34 In a 
rebuttal to this study, Fischer et al.35 noted that Kamii 
and Dominick36 did not allow students who learned 
a standard algorithm to use it and only compared 
their performance to students who created their 
own algorithm. Therefore, they suggested the Kamii 
and Dominick research could not support the claim 
to stop teaching algorithms. Additionally, over the 
last two decades, students have been encouraged 
to develop their own reasoning and strategies and 
develop flexibility with mathematics,37 therefore, 
some educators may have moved away from teaching 
algorithms. 

Truth

Mathematics standards have emphasised that 
students should learn algorithms alongside the 
conceptual meaning of each of the algorithms.38 
Furthermore, meta-analyses have noted that teaching 
students explicitly how to solve mathematics problems 
leads to improved mathematics outcomes over 
encouraging students to create their own mathematics 
knowledge.39 In a research study, Torbeyns and 
Verschaffel40 demonstrated that students, after a 
year of practising an algorithm, could apply the 
algorithm correctly and preferred using the algorithm. 
When students did not use an algorithm, they often 
employed inefficient strategies to solve computation 
problems. In a comparison of standard algorithms to 
alternate algorithms, Norton41 worked with students 
across ages 9 to 12 on a measure of addition, 
subtraction, multiplication, and division computation. 
He determined that, across operations, students who 
employed standard algorithms were more likely to 
solve each problem correctly than students who used 
alternate algorithms. 

In Mathematics Teaching

When teaching students algorithms, consider the 
following:

(1) Teach an algorithm in tandem with a focus on 
conceptual knowledge. As suggested by Fischer et 
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al.,42 algorithms are helpful for successful mathematics 
students but algorithms must be taught alongside 
conceptual knowledge so students know when and 
how to apply each algorithm. For example, if modeling 
how to use an algorithm to add 178 + 346, emphasise 
place value concepts of hundreds, tens, and ones 
and emphasise the concept of regrouping (i.e., 13 is 
1 ten and 3 ones). As described earlier in this paper, 
conceptual and procedural knowledge should develop 
concurrently. 

(2) Check student background knowledge. To use 
an algorithm well, students have to have a strong 
understanding of numbers and place value.43 That is, 
ensure students have a foundation in understanding 
what it means to add, subtract, multiply, or divide 
before introducing an algorithm. 

(3) Model and practise. In a study with university 
students, many had difficulty with the algorithms 
after years of not practising them.44 Students often 
apply the wrong operation within computation;45 
therefore, practise identifying the operator symbol 
and determining which algorithm to apply may be 
particularly important. Many algorithms may need 
to be explicitly modeled and practised, especially for 
students who experience mathematics difficulty,46 
47 so it is important to determine the timing of such 
modeling. For students with mathematics difficulty, 
more practice opportunities (than students without 
such difficulty) may be necessary to become efficient 
with an algorithm, so carve out practice time for 
students.48 

(4) Consider factors important for computation 
with algorithms. Researchers have identified 
mathematics fact skill (i.e., 4 + 5, 13 - 9, 8 × 7, or 
45 ÷ 9), working memory, and processing speed 
as predictors of computation performance.49 50 
Providing more practice of mathematics facts may 
lead to improved computation performance. While 
working memory practice may be important for some 
aspects of mathematics,51 52 research is on-going 
about best practice for engaging working memory 
within mathematics. Therefore, being aware of the 
working memory and processing speed limitations of 
students could be a helpful starting point for design of 
instruction related to the algorithms. 

Myth: Inquiry-Based 
Learning is the Best 
Approach to Introduce 
and Teach Mathematics

Myth

The myth remains that inquiry-based learning should 
be the primary method used to teach mathematics.53 

The first issue with this myth is the assumption that 
inquiry-based instruction should be the standard 
method of learning. Data from international 
assessments (e.g., PISA) suggests that many students 
experience challenges learning mathematics. In 
addition, educators are going to see the impact of 
recent and unprecedented interruptions to instruction 
on students’ mathematics performance for years to 
come. A majority of students will benefit from more 
structured initial instruction. Next, inquiry-based 
learning is suggested to increase achievement, 
curiosity, and interest in mathematics, as well as 
promote motivation to solve new and novel problems, 
yet we do not have sufficient data to support these 
claims.

Truth

Students have difficulty with learning when instruction 
is misaligned with student learning needs and 
readiness.54 While some students may thrive with true 
inquiry-based learning, their success is an exception 
rather than the standard outcome. In fact, decades of 
research evaluating effects of inquiry-based learning 
and guidance demonstrated that more specific 
supports and guidance have been more effective than 
inquiry without supports in a wide range of contexts.55 
56 57 58 59 De Jong and Van Joolingen60 reported that the 
forms of inquiry that were most beneficial were those 
that also included access to relevant information, in 
addition to support to structure inquiry and monitor 
progress —  all elements that align with explicit 
instruction.61 

Essentially inquiry-based learning is reactive rather 
than proactive to student readiness. Lazonder 
and Harmsen62 noted that many of the supporting 
scaffolds reported in studies in their meta-analysis 
were added ‘ad hoc’. Rather than assuming inquiry-
based learning is the best approach to introduce and 
teach mathematics, it is more appropriate to design 
instruction based on content, existing evidence of 
effectiveness, and likelihood of success considering 
student strengths and learning readiness. To do this, 
consider student readiness to engage in a learning 
activity. Novice learners, for whom the concepts and 
procedures are new or not-yet understood benefit 
from explicit instruction more than inquiry-based 
learning.63 With explicit instruction, the educators 
consider the scope and sequence of mathematics, 
building and connecting new concepts with previously 
learned concepts, and guide the learning process 
by modeling the skill, providing scaffolded practice, 
and finally encouraging independent practice and 
application of skills.64 Metaphorically, a builder wants 
to build a birdhouse. They need the appropriate tools 
and materials to complete the project. If the builder 
has the materials, but not the tools, the builder will 
likely not be successful in the process or may build 
something that takes more effort and is less effective.
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In Mathematics Teaching

To provide all students with high-quality mathematics 
instruction, consider:

(1) Teach with evidence-based practises first. One 
evidence-based practice with a large corpus of 
evidence includes explicit instruction.65 66 67 68 69 
Explicit instruction is a combination of modeling, 
practice, and feedback.70 71 Explicitly teaching skills 
students are initially acquiring affords students to 
be successful applying skills later to new and novel 
concepts provided through inquiry. 

(2) Rather than offering true inquiry, provide modified 
inquiry learning with built-in scaffolds and support 
for student success. Explicit instruction is important 
when the discovery process may be inaccurate, 
incomplete, inefficient, or inadequate,72 which is often 
for many students. Anticipating student challenges 
during inquiry and proactively providing scaffolds 
and supports will help students make connections. 
Incorporate evidence-based practices including: 
guided notes73 to support learners progression 
through the task, self-regulated strategy development 
(SRSD) to support self-regulation in multi-step 
problem solving tasks,74 and incorporate teaching 
how to use concrete manipulatives75 or the concrete-
representational-abstract instructional framework76 to 
develop conceptual understanding. 

Myth: Productive 
Struggle is Important

Myth

Productive struggle is when educators present 
students with hard and complex mathematics 
problems that require students to grapple with 
problem solving and persevere through missed steps 
or failures to determine a solution to the problem. It 
is believed that this struggle develops student “grit,” 
fosters deeper understanding, and promotes creative 
problem solving. Productive struggle is anchored 
in the assumptions that (a) the activity will be 
challenging and difficult for the student, (b) students 
will self-regulate through trial and error problem 
solving, (c) engaging in struggle focuses on concept 
and problem-solving process,77 and (d) students 
are motivated to persist- rather than just solve for 
the right answer.78 At face value the assumptions 
are reasonable, but research draws attention to the 
different ways productive struggle is problematic. 

Truth

The struggle many students experience is frustrating 
and wasteful rather than productive. As explained by 
Hiebert and Grouws,79 “do not use struggle to mean 

needless frustration or extreme levels of challenge 
created by nonsensical or overly difficult problems” (p. 
387). Much of the difficulty with productive struggle 
is how educators interpret the level of struggle. Many 
students find this process excessively frustrating, 
overwhelming, and a fruitless practise of practising 
and applying misinformation. Hiebert and Grouws80 
suggested “struggle to mean that students expend 
effort to make sense of mathematics, to figure 
something out that is not immediately apparent” 
(p. 387). In the following paragraphs, we expand 
upon each of the assumptions behind the myth of 
productive struggle.

Similar to inquiry-based instruction, the impact on 
student outcome is not as favourable as the intent of 
the instructional process. Addressing the underlying 
assumptions: The practice of providing a ‘hard’ 
problem to solve suggests that the task is beyond 
reasonable reach of students. National Council of 
Teachers of Mathematics81 shares that students 
should experience appropriate challenges; but, what 
is appropriate? Appropriate requires substantial 
understanding of concepts and procedures in order to 
generalise them to new and novel situations. Activities 
that require application of skills students do not have 
are an ineffective use of instructional time. Students 
actually need considerable prior knowledge to self-
regulate novel problems.82 Explicit instruction is more 
appropriate for initial and acquisition instruction while 
productive struggle may be more appropriate for 
generalization when students are proficient in requite 
skills necessary to adequately solve the problem.

Next, self-regulation is effective when students are 
self-regulating their behaviours and processes, but 
self-regulation does not replace skill and substantial 
support is needed to scaffold to correct missteps. 
Redirecting instructional effort from inquiry-based 
instruction to self-regulated strategy development 
(SRSD), an evidence-based practice that has 
substantial research supporting student outcomes in 
mathematics and other academic areas, is a more 
efficient use of time and resources.83 84 SRSD focuses 
on supporting students successfully engaging in 
higher-level cognitive processes, self-monitoring their 
own learning process, and developing positive learning 
attitudes. In this process, students are taught to set 
goals, monitor learning behaviors, engage in positive 
self-talk, and reinforce successes. Explicit instruction 
components embedded in the process contribute to 
SRSD’s effectiveness (e.g., Hughes & Lee, 2020).85

There is no evidence that struggling with a 
mathematics concept increases the problem-solving 
process in such a way that impacts achievement 
outcomes. While resources on how to “support” 
productive struggle are readily available on the 
Internet, research to support this concept is weak 
and unsubstantial at best (e.g., Kapur, 2014),86 unlike 
evidence-based practices, such as those mentioned 
throughout this paper, that have substantial evidence 
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supporting favourable achievement outcomes. 
Conceptual and procedural knowledge are important 
and bidirectional.87 Essentially, they should be taught 
simultaneously. Drawing mathematical connections 
is important to build conceptual understanding.88 
Productive struggle does not support students 
building connections between relevant information 
and concepts. When productive struggle and explicit 
instruction were compared in two randomised 
controlled trials, which are the ‘gold standard’ in 
research design, students who received explicit 
instruction prior to problem solving activities 
outperformed students who engaged with problem 
solving prior to explicit instruction.89 

Finally, productive struggle is perceived as motivating 
because students are not just replicating a procedure. 
An authentic application to mathematics can be 
motivating to students, especially if the problem 
to solve is one that they value as interesting or 
important. However, there are a few things to consider 
regarding motivation to learn mathematics. Student 
motivation to learn is important, but does not replace 
or make up for lack of skill. As such, students who are 
motivated to learn and have the necessary skills to be 
successful are more likely to outperform students who 
are motivated but have not learned the skills required 
for the task,90 suggesting motivation to learn will not 
make up for students' under-preparedness due to lack  
of previous instruction.   

In Mathematics Teaching

Here are several suggestions related to productive 
struggle:

(1) Consider the scope and sequence as well as 
learner readiness when presenting problem-solving 
activities. Students should be set up to be successful 
with mathematics. Order of activities matter, 
with effective instruction preceeding challenging 
application.91

(2) Be sure students have a firm understanding and 
error-free application of requisite skills to solve novel 
problems.

(3) Have instructional scaffolds in place that can be 
removed if or when students no longer need them. 
It is better to have the scaffolds in place and remove 
them than to try and add them in after students have 
already struggled and possibly become confused 
and frustrated. Using worked examples are one 
way to support procedural skills and conceptual 
understanding.92

(4) If you want to pique students’ interest at the 
beginning of the lesson by presenting a challenging 
and novel problem, allow limited time for exploration 
(e.g., approx. 5 min, no more than 10 min). 
Disclose to students before the lesson that this is an 
exploratory activity and the purpose is to explore the 
concept rather than solve for the ‘right’ answer at this 
time.

(5) Motivate students by effectively teaching them the 
skills to be successful.

Myth: Growth Mindset 
Increases Achievement

Myth

Growth mindset theory emerged from two theories 
from motivational research – attribution theory and 
achievement goal theory. Attribution theory postulates 
that individuals’ perceptions (or attributions, hence 
the name) for why they experienced success or failure 
when engaging in an event will shape their reaction to 
the effect moving forward.93 For example, a student 
may attribute their success to them being smart 
versus another student may attribute their success to 
the effort and practice they put into learning the skill. 
This differentiation in attributes may shape students’ 
reaction to similar events in the future or how they 
handle success and failure. Achievement goal theory 
postulates that the nature of an individual’s goal will 
impact their attributions to events — thus the tie 
back to attribution theory.94 Students who have a task 
goal, for example an aim to improve learning, will 
have more positive attributes and respond better to 
failure than students who have ego focused goals, for 
example aiming to perform better than others. 

These theories build the foundation for mindset theory 
and the focus on a growth mindset.95 Mindset theory 
suggests individuals may have a growth mindset and 
believe that personal characteristics are malleable 
and can be changed, or a fixed mindset and the belief 
these characteristics are unchangeable. The theory 
posits that individuals with a growth mindset are more 
willing to set goals and put forth effort to enhance 
learning and growth in specified areas because of the 
belief that growth is possible. Conversely, individuals 
with a fixed mindset will put forth less effort and set 
lower goals because of the belief these characteristics 
are fixed. So where is the controversy? The question 
lies at whether instructional time should be allocated 
specifically on mindset training and whether this 
decision is likely to result in meaningful mathematics 
gains. 

Truth

The current research has shown minimal evidence to 
support stand-alone growth mindset interventions. 
An initial efficacy study demonstrated minimal gains 
on grade point average and mathematics course 
grades;96 however, a replication attempt failed to 
show promising results.97 A recent randomised control 
trial assigned third graders who demonstrated need 
for mathematics intervention to three separate 
conditions: (a) business as usual, (b) fraction 
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intervention, and (c) fraction intervention plus growth 
mindset training. Results revealed no difference in 
mathematics learning gains between the stand alone 
fraction intervention in comparison to the fraction 
intervention plus growth mindset.98 So where does 
this leave educators based on growth mindset theory?

In Mathematics Teaching

Several suggestions include the following:

(1) Focus mathematics instruction on building 
mathematics skills. 

(2) Acknowledge that student engagement during 
instruction and willingness to put forth effort to 
engage in mathematics tasks is needed. Thus, 
embedding high-quality instructional tactics focused 
on reinforcing student engagement, task persistence, 
and self-regulation while also delivering high-quality 
mathematics instruction is critical. Three low-intensity 
and easy to implement practices focused on this 
endeavour include (a) behaviour specific praise 
statements, (b) teaching students a self-monitoring 
procedure for academic skill performance or behaviour 
performance (e.g., on-task), and (c) goal setting.

Myth: Executive 
Function Training is 
Important

Myth

Executive functions is theorised as a set of cognitive 
skills that allow people to direct behaviour toward the 
attainment of a goal.99 100 What are the core cognitive 
skills that comprise executive functions? Short answer, 
it is messy and research teams have taken different 
theoretical approaches to operationally defining this 
construct! Three skills typically included in definitions 
are inhibition, updating, and switching. Behavioural 
inhibition is the ability to inhibit an initial response 
in favour of a subdominant response. For example, 
a student working through addition and subtraction 
mixed skills may see ‘4’ and ‘3’ and immediately 
want to say ‘7’ but inhibiting this response to instead 
inspect the operation sign “-“ will allow the child to 
provide the correct response. Updating is the task 
of evaluating new information being presented and 
determining its relevance to achieving the goal at 
hand. An excellent example of this can be found 
in math word problems (i.e., story problems). The 
math situation presented in the word problem often 
contains relevant and irrelevant information that 
students need to sift through – updating would 
be hypothesised as being a critical skill to achieve 
this goal. Last, switching is the ability to shift one’s 
attention to different information or switch between 
strategies being employed or switch between different 

tasks. One salient example of when switching would 
be relevant is using the standard algorithm within 
multi-digit multiplication. Students must shift between 
using multiplication and addition throughout the 
process. 

There are two related myths related to executive 
functioning and mathematics instruction. First, there 
is a belief that executive functioning is more influential 
on students’ mathematics achievement than other 
academic domains. A meta-analysis evaluated the 
current empirical data evaluating correlations between 
executive functioning and reading on mathematics 
achievement, and the authors found the correlation 
to be similar across both outcomes.101 Thus, executive 
functioning is not more influential on mathematics 
achievement than reading achievement. 

The second belief is that stand-alone interventions 
targeting executive functioning will transfer to 
improvements in mathematics outcomes. A meta-
analysis evaluated the experimental evidence on the 
effects of executive functioning interventions on a 
variety of outcomes.102 So, what did they find? An 
intervention targeting a specific aspect of executive 
functioning (e.g., inhibitory control, working memory) 
demonstrated improvements in that specific skill, 
but limited evidence of transfer to a related skill. For 
example, an intervention targeting working memory 
may show improvements in working memory (using 
the same measurement instrument), but the learner 
would not show gains in other aspects of executive 
functioning (e.g., cognitive flexibility, behavioural 
inhibition). Second, the authors found no evidence of 
far-transfer to academic skills. For example, training 
working memory would not then lead to increased 
learning in mathematics facts. To summarise, stand-
alone executive functioning interventions have no 
evidence to yield mathematics learning gains.

Truth

It is likely cognitive factors, such as executive 
functioning, will be correlated with mathematics 
achievement.103 However, the current empirical 
evidence is messy because many experiments have 
failed to control for a host of learning histories, 
environmental factors, and other biological 
components when evaluating the correlation between 
executive functioning and mathematics achievement. 
Jacob and Parkinson104 identified only five of the 67 
studies included in their meta-analysis rigorously 
controlled for other variables when evaluating 
the relation between executive functioning and 
mathematics (or reading) achievement. Only one of 
the 13 investigated associations between executive 
functioning and academic achievement remained 
statistically significant after controlling for other 
variables likely to impact academic achievement. 
Thus, the causal link between executive functioning 
and mathematics achievement is severely limited 
given the current evidence.
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In Mathematics Teaching

Consider the following related to executive functions 
within mathematics:

(1) Teach explicitly. Unambiguous, systematic, and 
explicit instruction reduces the likelihood student 
differences in executive functioning will impact 
learning. The core components of explicit instruction 
aim to (a) segment complex skills, (b) focus student 
attention on salient concepts, (c) systematically fade 
supports, (d) high levels of student responsiveness, 
and (e) provide meaningful practice opportunities.105 
106 

(2) Segment skills and use clear language. A focus on 
segmenting complex skills into subskills and explicitly 
highlighting salient concepts through clear and concise 
language (and perhaps supported through visuals 
or manipulatives) will reduce the impact executive 
functioning needs to play in accessing the learning 
environment. See Hughes et al.107 and Powell et 
al.108 for examples of clear and concise mathematics 
language in elementary and secondary mathematics.

(3) Allow for high levels of opportunities to respond, 
which are connected to positive student outcomes,109 
and provide students with meaningful practice. If 
students are task engaged and building automaticity 
in the core skills, this will reduce the working memory 
load as the composite skills are used for more 
complex skills later in the year.

Myth: Timed 
Assessments Cause 
Mathematics Anxiety

Myth

As the name implies, timed assessments consist of 
students answering mathematics items under timed 
conditions. The myth suggests that having students 
solve mathematics items under timed administration 
protocols will cause a subset of students to develop 
mathematics anxiety. This myth is multifaceted in 
why it is persistent in mathematics education. First, 
educators are concerned that having students answer 
difficult mathematics items under timed conditions 
will produce stress and anxiety that will ultimately 
manifest into a negative affect towards mathematics 
generally and mathematics anxiety. Others use this 
claim of timed assessments causing mathematics 
anxiety as part of an attack against being ‘quick’ or 
‘speedy’ at mathematics as a goal for mathematics 
education and instead the onus should be placed 
on deep conceptual understanding and flexibility in 
mathematical thinking. However, research consistently 
shows timed assessment is beneficial from both 

a measurement standpoint and an instructional 
standpoint. Teachers are rightfully wary of timed 
assessment because when used ineffectively it 
yields useless data and is an ineffective instructional 
technique.

Truth

Before diving in, let us consider a hypothetical 
situation. An educator administers a maths 
multiplication fact sheet to all students in the class. 
All students get the same exact sheet. Before the 
educator starts the timer, they say, “It is important 
to master our maths facts. If you get below [X] 
correct, then we will spend the first 5 minutes at 
recess practising.” As students work on the sheet 
you see students quickly slapping their pencil down 
and flipping their paper over to signify, they finished. 
Other students quickly look at them and frantically get 
back to their sheet. As the timer rings the educator 
yells, “Times up, trade with your shoulder partner.” 
The educator has students exchange sheets with a 
peer. As the educator reads off the answers the peer 
scores the sheet. The educator then posts everyone’s 
score on a classroom board to track student progress. 

This hypothetical is what many conjure when thinking 
of timed assessment. There are many issues with 
correct implementation of timed assessment in this 
hypothetical: (a) assigning same problems to all 
students, (b) removing a reinforcing activity based on 
skill performance, (c) using a problem set with too low 
a ceiling so students see others finish first, (d) using 
peer grading to promote normative comparison, and 
(e) public posting of performance.

The truth is there is no causal evidence that timed 
assessments will produce mathematics anxiety. 
When used appropriately, timed administration is a 
valuable instructional technique. From a measurement 
standpoint, capturing fluency of mathematics 
performance is a more sensitive and accurate 
evaluation of student performance than solely relying 
on accuracy.110 A necessary point to reiterate here is 
that fluency is defined as speed and accuracy,111 for 
example, how many correct mathematics items were 
solved within 1 min. Capturing correct responses 
under timed conditions is the basis for curriculum-
based measurement, which is a foundation for the 
screening and progress monitoring systems schools 
use as part of tiered models of instruction.112 From 
an instructional standpoint, timed assessment is just 
retrieval practice opportunities. Students who can 
effortlessly retrieve declarative facts required for 
procedure or application tasks will be much more 
likely to be successful on the target task. This can 
be tied back to cognitive load theory.113 If declarative 
facts are not known, working memory will be depleted 
by attending to the declarative facts and unable to 
focus on the details required for the procedure or 
application task. By incorporating a timed component 



  9 

and using goal setting (i.e., can you beat your own 
score from last time?) students will aim to retrieve the 
fact or procedure and apply it repeatedly during the 
timed trial.

In Mathematics Teaching

Here are several suggestions related to timed 
assessment:

(1) For educators providing core instruction (i.e., 
Tier 1) it will be useful to identify the class median 
performance on discrete math skills (e.g., sums to 
20, double digit addition, etc). The class median 
performance will guide teachers to identify the skill 
that is situated in the classwide instructional range. By 
using classwide data to inform instruction, students 
will be more likely to encounter math tasks that are 
known but have a slow response time, thus perfect 
for fluency practice (to read about the instructional 
hierarchy, see Burns et al., 2010).114 From an 
instructional standpoint, explicit timing involves 
students practising mathematics items under timed 
conditions. 

(2) Administer timed assessments as low-stakes 
activities. For example, do not tie the assessment to 
a grade, consequences of scores should not include 
removal of desired activities, and avoid peer-to-peer 
comparisons.

(3) Embed goal setting as part of the process. Have 
the students graph their score (on a graph that only 
they can see — no public sharing of graphs). Have the 
students aim to beat their previous score — because 
instruction is occurring on these skills this should be 
likely.

(4) If administering timed assessment class wide, 
ensure the floor is high enough for all students. This 
means enough items need to be included that no 
student should finish all items on the sheet in the time 
frame. Explicitly telling students this expectation will 
reduce concerns that all items were not solved.

Conclusion

Myths about learning have been around for a long 
time and continue to plague classroom practice 
despite consistent lack of evidence demonstrating 
positive outcomes for students.115 In this paper, we 
addressed seven myths:

 (1) conceptual then procedural understanding;

 (2) teaching algorithms is harmful;

 (3) inquiry learning is the best approach;

 (4) productive struggle is important;

 (5) growth mindset increases achievement;

 (6) executive function training is important; and 

(7) timed assessments case mathematics anxiety. We 
described each specific to the teaching and learning of 
mathematics and presented a counter position based 
on current knowledge in the field of education. Letting 
go of instructional myths may not be easy, as they are 
often repeated as truth and accepted at face value. 

To provide all students with high-quality mathematics 
instruction, we provided the following suggestions:

(1) Conceptual and Procedural Understanding:

• Model and practise conceptual understanding as 
part of solving mathematics problems.

• Model and practise procedural understanding as 
part of solving mathematics problems.

• Explicitly connect conceptual and procedural 
knowledge.

(2) Teach Algorithms:

• Teach an algorithm in tandem with a focus on 
conceptual knowledge.

• Check student background knowledge, such as 
understanding of numbers and place value.

• Model and practise algorithms

• Consider factors important for computation 
with algorithms, such as mathematics fact skill, 
working memory, or processing speed.

(3) Teach Using Evidence-Based Practices:

• Teach with evidence-based practices first.

• Rather than offering true inquiry, provide modified 
inquiry learning with built-in scaffolds and support 
for student success.

(4) Understand Limitations of Productive Struggle:

• Consider the scope and sequence as well as 
learner readiness when presenting problem-
solving activities.

• Be sure students have a firm understanding and 
error-free application of requisite skills to solve 
novel problems.

• Have instructional scaffolds in place that can 
be removed if or when students no longer need 
them.

• If you want to pique students’ interest at 
the beginning of the lesson by presenting a 
challenging and novel problem, allow limited time 
for exploration.

• Motivate students by effectively teaching them 
the skills to be successful.(5) Understand 
Limitations of Growth Mindset:

• Focus mathematics instruction on building 
mathematics skills. 

• Acknowledge that student engagement during 
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