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An understanding of mathematics gained 
during primary and secondary school is 
essential for success in university and 
career (Byun et al., 2015; Davis-Kean 
et al., 2022). When students excel in 
mathematics, pathways are opened to 
them, particularly in Science, Technology, 
Engineering, and Mathematics (STEM) 
careers. However, when students 
experience difficulty with mathematics, 
those pathways may be limited or closed. 
To ensure that all students have the 
opportunity to excel, they need access to 
high-quality mathematics instruction during 
their school careers. 

High-quality mathematics instruction relies 
on strategies that have been identified 
as research validated. That is, through 
multiple research studies conducted 
in school-based settings, organised by 
different researchers across years (and 
sometimes decades). From this, an 
evidence base emerges to support the use 
of a program or practice. In mathematics, 
there are packaged research-validated 
programs that schools can purchase or 
access. These have everything a teacher 
needs to teach mathematics at a specific 
grade or for specific mathematics content. 
Unfortunately, teachers may not always 
have access to such programs, which 
is why an understanding of research-
validated practices is useful.

Research-validated practices have 
been shown to be effective for student 
mathematics outcomes across multiple 
studies. In this paper, we review five 
research-validated practices deemed 
important for mathematics instruction, 
particularly for students who experience 
difficulty (Centre for Education Statistics 
and Evaluation, 2020; Fuchs et al., 2021). 
We focus on research-validated practices 
for these students because average 
mathematics scores of students in Australia 
have declined over the last two decades, 
which means more students require high-
quality mathematics instruction than 
ever before (OECD, 2023). Furthermore, 
identification of mathematics learning 
disability is uneven in Australia (Reeve, 
2019) which means there are many 
students who may not be identified with 
a mathematics learning disability but 
require support in the general mathematics 
classroom. 

In each section of this paper, we explain 
the practice, the research that supports the 
practice, and what this practice might look 
like in the classroom.

Introduction

Practice #1: Focus on the Language of Mathematics

What is this practice?

Mathematics language includes the 
terms (e.g., numerator, polygon, factor), 
numbers (e.g., 5, ½, -4.92), and symbols 
(e.g., +, =, %) that teachers and students 
use to communicate about mathematics. 
Mathematics language may also include 
gestures and visuals. For students to be 
successful with mathematics, they must 
understand the language used, as this 
allows them to fully access and participate.

One important aspect of mathematics 
language is vocabulary. One of the reasons 
to focus instruction on mathematics 
vocabulary is because there are hundreds 

of terms that students need to know. In the 
early elementary grades, students may be 
expected to learn and understand 100 to 
150 mathematics vocabulary terms (Powell 
et al., 2021). In Grade 3 (around age 8 to 
9), mathematics vocabulary expectations 
increase to more than 300 terms with 
another increase up to 500 terms in Grade 
6 (around age 11 to 12). As noted by 
Powell et al. (2021), across kindergarten 
through Grade 8, students learn more 
than 1200 unique mathematics vocabulary 
terms. Furthermore, the vocabulary 
expectations within mathematics curricula 
can be cumbersome. That is, Barnes and 
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Stephens (2019) determined that several 
textbooks from the early elementary 
grades suggest students learn more than 
40 different terms within a unit!

Another reason to focus on mathematics 
vocabulary during instruction is because 
students experience confusion with terms 
(Rubenstein & Thompson, 2002). Some 
reasons for this include: (a) terms may be 
used in mathematics and general English 
but with different meanings (e.g., base 
of a three-dimensional figure vs. base 
in basement); (b) terms may be used in 
mathematics and general English but with 
similar meanings (e.g., difference between 
11 and 6 vs. difference between autumn 
and spring); (c) terms may have more 
than one meaning in mathematics (e.g., 
base of a three-dimensional figure vs. a 
base and its exponent); (d) terms may 
be homophones (e.g., base of a three-
dimensional figure vs. bass guitar); and 
(e) terms may be unfamiliar outside of the 
mathematics classroom (e.g., hexagon, 
Pythagorean theorem, vertex). 

What is the research?

There are several research studies that 
have examined aspects of mathematics 
vocabulary. Across 40 research studies, Lin 
et al. (2021) determined that mathematics 
vocabulary shared a significant correlation 
with mathematics performance (r = .49). 
Specific to preschool, Turan and DeSmedt 
(2022) also learned that mathematics 
vocabulary correlated with overall 
mathematics performance. Further, Lin 
(2021) identified mathematics vocabulary 
as a unique predictor of word-problem 
performance. And in an analysis of 
mathematics questions from state-level 
mathematics tests administered at Grades 
4, 7, and 10, Shaftel et al. (2006) noted 
that mathematics vocabulary in a test 
question made the item significantly more 
difficult for students to answer correctly. 
Given that the majority of mathematics test 
questions involve reading and interpreting 
text-based word problems to demonstrate 
mathematics proficiency (Powell et 
al., 2022), mathematics vocabulary is 
important for success.

To support the mathematics vocabulary 
of students, researchers have identified 
various approaches that may lead to 
improved mathematics vocabulary 

knowledge. As examples, Stevens et 
al. (2022) developed a routine in which 
students learned a student-friendly 
definition for a vocabulary term, tied the 
term to a visual, used the term within 
context, and then used sentence frames 
to discuss the term with other students. 
Nelson and Kiss (2019) provided instruction 
on vocabulary terms then had students 
create their own glossaries with terms and 
student-friendly definitions. To introduce 
vocabulary, both Hassinger-Das et al. 
(2015) and Purpura et al. (2017) used 
mathematics-vocabulary storybooks 
and encouraged teachers to engage in 
discussions about essential vocabulary 
in the books. And for practice, Petersen-
Brown et al. (2019) used vocabulary flash 
cards, Lin and Powell (2023) had students 
play a matching game between vocabulary 
terms and their definitions, and Groth et al. 
(2016) had students play games in which 
vocabulary was matched with visuals. As 
emphasised by Riccomini et al. (2015), 
fluency with mathematics vocabulary 
occurs through multiple exposures and 
practice. 

What does this look like 
in the classroom?

As teachers model and practise 
mathematics vocabulary, it is important 
to emphasise the formal vocabulary terms 
in mathematics (e.g., product instead 
of answer; regroup instead of borrow; 
horizontal instead of across). While there 
are many ways to emphasise mathematics 
vocabulary, we focus on three suggestions 
in this section. First, teachers may want 
to create a mathematics vocabulary word 
wall (Powell et al., 2023). These could hang 
on the classroom wall or be presented via 
a slide deck. Word wall cards (see Figure 
1) should contain the vocabulary term, a 
student-friendly definition, and a visual 
that helps students understand the term. 

Word walls, however, are only helpful to 
students if they are referred to often by 
both teachers and students. For example, 
when asking students to discuss with a 
partner how they would solve a problem, 
the teacher could encourage students 
to use at least three vocabulary terms 
from the word wall. Word walls are also 
important reference tools when students 
engage in writing about mathematics. 
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Beyond word walls, students could 
include specific word-wall cards in their 
mathematics journals or notebooks.

Figure 1.

A second suggestion for mathematics 
vocabulary is to create anchor charts to 
help students distinguish among terms 
used within the same unit (Powell et al., 
2019). Figure 2 shows an anchor chart for 
vocabulary terms related to coordinate 
planes. As with word walls, anchor charts 
are only helpful to students when they are 
highlighted regularly during mathematics 
instruction. Students could generate their 
own anchor charts and draw them in their 
mathematics notebooks.

Figure 2.

As described by Stevens et al. (2023), 
sentence frames could be used to focus 
conversations on mathematics vocabulary. 
An example sentence frame for greater 
could be: “___ is greater than ___ because 
___.” Matching games could also be a way 
to help students connect mathematics 
vocabulary terms to definitions (see Figure 

3; Lin & Powell, 2023). Besides matching a 
term to a definition, students could match 
terms to pictures. 

Figure 3 

And finally, students could use graphic 
organisers (see Figure 4) to explore the 
definitions and characteristics of vocabulary 
terms (Lin & Powell, 2023). These 
organisers could be kept in mathematics 
journals for reference.

Figure 4
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Practice #2: Use Multiple Representations

What is this practice?

The planned integration of multiple 
representations within mathematics 
instruction has been identified in the 
literature base as an essential component 
of effective mathematics instruction 
(Fuchs et al., 2021). Representations 
are visual supports embedded into 
instruction to help students increase their 
conceptual understanding, strengthen 
their procedural knowledge, and enable 
students to think more flexibly during 
mathematical tasks (Peltier et al., 2020). 
As a research-validated practice, the 
term multiple representations refers 
to a teacher’s use of multiple forms 
of representations during instruction 
to enhance student understanding of 
mathematics content. In mathematics, 
the three main forms of representations 
include concrete representations, semi-
concrete representations, and abstract 
representations (see Figure 5).

Figure 5

Abstract representations refer to written 
numbers or other mathematical notations, 
such as symbols, expressions, and 
equations (Powell et al., 2023). Concrete 
representations are three-dimensional 
physical materials that students can 
hold in their hands and physically 
manipulate during mathematics tasks 
(Carbonneau et al., 2013). Examples 
of concrete representations include two 
coloured counters, fraction tiles, linking 
cubes, plastic coins, and pattern blocks. 
Semi-concrete representations are two-

dimensional illustrations of mathematics 
concepts that feature similar features as 
concrete representations (Hinton & Flores, 
2022). Some commonly used semi-
concrete representations include drawings 
or images of base 10 blocks, number 
lines, area models, and arrays. Virtual 
manipulatives (i.e., manipulatives offered 
in a digital format) can also be thought of 
as a type of semi-concrete representations. 
Virtual manipulatives function like concrete 
manipulatives, but are presented digitally 
and often have embedded scaffolds, such 
as colour coding, labels, and graphic 
organisers (e.g., equation mats for algebra 
tiles; Bouck et al., 2020). 

Many representations, like a number line, 
can be used in concrete, semi-concrete, 
and virtual forms. In this case, multiple 
representations of a number line can help 
students develop an understanding of 
numbers and their values. For students 

in both elementary and secondary school 
settings, there is strong evidence that 
exists to support the use of multiple 
representations to anchor student 
understanding (Flores et al., 2014; Peltier 
et al., 2020; Jitendra et al., 2016).

What is the research?

A considerable amount of research has 
examined multiple representations as an 
instructional component to teach content 
across domains within mathematics (e.g., 
word problems, fractions, geometry, 
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decimals; Bouck & Long, 2021; Jitendra 
et al., 2022). Results from meta-analyses 
have demonstrated that manipulatives 
(i.e., concrete tools) may be important 
for mathematics learning for a variety 
of students (Carbonneau et al., 2013; 
Peltier et al., 2020). Bouck et al. (2018) 
determined the concrete/semi-concrete/
abstract framework as a research-validated 
practice for students with mathematics 
difficulty. 

Much of existing research focuses on the 
concrete-representational/semi-concrete-
abstract (CRA/CSA) sequence, in which 
students progress through each stage 
of representation in sequential order 
(Hinton & Flores, 2019; Miller & Hudson, 
2006). For example, in a synthesis of 
22 experimental studies focused on 
fraction instruction, Hwang et al. (2019) 
determined that multiple representations 
presented sequentially significantly and 
positively impacted students’ conceptual 
understanding, procedural skill, and word-
problem solving.

Although much attention has been paid to 
the sequence of multiple representations, 
research also supports the use of an 
integrated concrete/representational/
abstract (CRA-I) approach, particularly 
at the secondary level, in which multiple 
representation types are presented 
simultaneously during instruction (Kabel 
et al., 2021; Strickland, 2016). Morano 
and colleagues (2020) noted no difference 
in whether students learned about 
fractions with CRA or CRA-I. This finding 
is significant because it supports the 
notion posited by Hammer (2018) that 
multiple representations do not have to 
be presented in a specific concrete semi-
concrete abstract sequence, but rather it 
is important to consider individual student 
needs when determining the type of 
representation to use during instruction. 

What does this look like 
in the classroom?

Incorporating multiple representations 
into mathematics instruction can be 
thought of as a two-part process — before 
instruction (i.e., planning) and during (i.e., 
instructional delivery). Before instruction, 
it is important to mindfully plan what 
type of representations would support 
student learning of a specific skill. The 

representation you choose should be 
mathematically accurate and align to the 
learning objectives and target mathematics 
content of the lesson (Powell et al., 2022). 
An additional consideration should be 
whether the representations can be used 
across multiple mathematics topics and 
whether they can be used consistently 
over time, even as mathematics 
content becomes more complex. Two-
coloured counters are an example of a 
representation that can be used flexibly 
across skill areas (see Figure 6). These 
counters can be used to develop students’ 
counting skills at the elementary level 
but may also be used for more complex 
tasks as students transition into the upper 
elementary and secondary grade levels, 
such as when representing fractions or 
working with integers. When given multiple 
opportunities to use representations 
consistently, students will be more likely to 
use representations as learning tools with 
fluency and accuracy.

Figure 6

During instruction, it is important 
to consider what instruction with 
representations will look like to students. 
To ensure students use representations 
effectively and efficiently, research 
supports the use of systematic and 
explicit instruction to teach students how 
the representations work and to provide 



6

students with rationale for use (Bouck & 
Long, 2021; Root et al., 2022). Teachers 
should use think-alouds (i.e., step-by-
step models), so students can see how 
to use the representation with precision 
and accuracy (see Figure 7 for example 
think-aloud with using place value discs 
to represent decimals). After the teacher 
models with multiple examples, students 
should have ample opportunities to 
solve problems and practise using the 
representations alongside the teacher 
before being gradually released to work 
through problems with representations 
independently. 

While students are engaging in practice 
problems using representations, teachers 

Figure 7

should monitor student learning through 
observation of student work (e.g., with 
manipulatives, with drawings on white 
boards) and discussion with students. 
Teachers should provide students with 
immediate and specific feedback on their 
performance. An example of affirmative 
feedback might be, “You and your partner 
used the place value discs to compare 
decimals! Cool!” Corrective feedback might 
be, “Look at the hundredths place again. 
What digit is in the hundredths place? 
Show that many with the place value 
discs.” Moving forward, ongoing monitoring 
of students’ representation use may be 
appropriate to ensure they continue to use 
the representations appropriately with both 
familiar and novel tasks. 
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Practice #3: Be Systematic and Explicit with Instruction

What is this practice?

Systematic and explicit instruction is a 
research-validated practice in mathematics 
used to increase students’ acquisition 
of mathematics knowledge and skills 
(Gersten et al., 2009). This is made 
possible through clear, unambiguous 
instruction that is presented sequentially 
and is systematically designed to include 
supporting practices that scaffold student 
learning of mathematics content (Doabler 
et al., 2017; Gersten et al., 2009). 
Sometimes people may refer to this type 
of instruction as explicit or direct (Hughes 
et al., 2017). In this paper, we describe 
systematic as the planful approach 
to designing instruction with explicit 
instruction as the delivery of instruction. 

What is the research?

A large volume of research supports the 
use of systematic and explicit instruction 
(Stockard et al., 2018), with numerous 
meta-analyses and syntheses supporting 
it as an effective practice, particularly to 
assist with development of foundational 
mathematics knowledge for students who 
experience difficulty (Chodura et al., 2015; 
Ennis & Losinski, 2019). Systematic and 
explicit instruction is believed to be the 
core of effective mathematics instruction 
(Chard et al., 2008), as it focuses on 
instructional behaviors (e.g., teacher 
moves) that result in clear instructions, 
scaffolded practice guidance, and 
consistent opportunities for students to 
share ideas and receive feedback (Hughes 
et al., 2022). Notably, systematic and 
explicit instruction is identified as research-
validated practice in mathematics (Heijltjes 
et al., 2014) and favorable to unassisted 
discovery learning (Alfieri et al., 2011; 
Kirschner et al., 2006). One reason for its 
effectiveness, as identified in the literature, 
is that this framework of instruction 
reduces cognitive load in students 
experiencing difficulties related to working 
memory (e.g., difficulty recalling previously 
learned material; Hughes et al., 2017). 

What does this look like 
in the classroom?

To implement systematic and explicit 
instruction, teachers must consider two 
things: instructional design (i.e., be 
systematic) and instructional delivery 
(i.e., be explicit). In terms of instructional 
design, it is imperative that teachers are 
aware of the skill progressions within 
mathematics. Such progressions emphasise 
that student learning occurs over time and 
that acquisition of easier (i.e., foundational) 
mathematics skills is necessary for 
developing adequate understanding of 
more complex mathematical concepts. 
Therefore, it is necessary for teachers 
to be familiar with the developmental 
progression of skills, such as the National 
Numeracy Learning Progression (Australian 
Curriculum, Assessment and Reporting 
Authority, n.d.) and consider the content 
that students learned in previous grade 
levels as well as what they will be expected 
to develop with proficiency in future 
mathematics courses. Knowledge of the 
progressions should be used to determine 
what content will be taught, when it will be 
taught, and how it will be taught. 

The second component of systematic and 
explicit instruction is the instructional 
delivery. Teachers should use a framework 
of delivery that includes three main 
components: modeling, practice, and 
supporting practices (see Figure 8). 
Delivering explicit instruction begins with 
teacher modeling. Modeling refers to the 
step-by-step demonstration of a skill 
or strategy. This often involves a ‘think 
aloud’ in which the teacher verbalises 
what they are thinking and doing at 
each step. Because of the emphasis on 
clarity of instructions, it is important to 
thoughtfully pre-plan modeling portions of 
lessons to ensure language and phrasing of 
directives are clear and concise. In addition 
to providing clear instructions, teachers 
should incorporate pre-planned examples 
and non-examples that can be either 
open-ended or previously worked problems 
(Ketterlin-Geller et al., 2019). When 
teachers do the mathematics during the 
planning stages, not only are they working 
through a problem and identifying potential 
student responses or misunderstandings, 
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but it can also be an opportunity to 
fine-tune lesson objectives, identify pre-
requisite skills necessary for students to 

Figure 8

master the skill, and consider ways to 
better scaffold and support students who 
may struggle (James et al., 2016).

The second component of explicit 
instruction involves the students practising 
the newly learned skill. Guided practice 
occurs when students are actively 
working on practice problems while the 
teacher solves alongside them. During 
guided practice the teacher is scaffolding 
instruction using questions, prompts, 
or cues and provides corrective in-the-
moment feedback to students. To engage 
students in guided practice, a teacher 
might say: “I just showed how to use the 
place value discs to represent decimals 
(see Figure 7), now let’s do a few problems 
together. Get out your place value discs 
and your place value mat. Ready? First, 
let’s all show 3.74.”

A second type of practice within the explicit 
instruction framework is independent 
practice. Independent practice provides 
students the opportunity to work 
independently on a task to demonstrate 
their understanding of the skill or 
strategy learned. Independent practice 
activities should be deliberate and have 
a clear purpose (e.g., fluency practice, 
generalisation, information retention). To 
engage students in independent practice, 
a teacher might say: “We just practised 

showing decimals with the place value 
discs. Now, it’s your turn to try a few on 
your own. Look at each number, then use 

the place value discs to represent each 
digit in the number. I’ll be around to help 
as needed.”

The third and final component of this 
framework involves the use of supporting 
practices that are embedded throughout 
the lesson cycle and serve to scaffold 
student understanding. Supporting 
practices include asking a good range of 
questions, eliciting frequent responses, and 
providing students with specific, immediate 
feedback. Questioning is often associated 
with the guided practice portion of lessons, 
however, questioning should occur 
throughout the lesson cycle to promote 
and verify student understanding of 
learned content (Archer & Hughes, 2010; 
Ketterlin-Geller et al., 2019). Questioning 
should include a mix of questions so that 
students are expected to go beyond simple 
recall of factual information (e.g., “What 
is 3 plus 4?”) and explain the why behind 
their responses (e.g., “Why do you have to 
regroup?”). Teachers should ask students 
to expound upon their answers, justify their 
solutions, and ultimately provide responses 
that require deeper levels of processing.

An additional supporting practice that 
should be included within explicit 
instruction involves providing students 
with opportunities to respond. Response 
opportunities are important for both 
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students and teachers. Students benefit 
when they have opportunities to verbalise 
their own mathematical thinking, 
but teachers also benefit from those 
verbalisations in that they can use it as 
data to monitor student understanding of 
concepts (Doabler et al., 2015). Students 
can be prompted in a variety of ways 
during the lesson and responses can come 
in many forms, including oral responses 
(e.g., choral responding), action-based 
responses (e.g., holding up a number of 
fingers, thumbs up or thumbs down, or 
walking to a certain location in the room), 
and written responses (e.g., writing on 
a white board and holding it up, short 
answer responses on paper, and the 
use of response cards; Hughes et al., 
2022; Ketterlin-Geller et al., 2019). That 
being said, it is imperative that teachers 
consciously plan how and when they will 
elicit responses throughout the lesson. One 
recommendation from Ketterlin-Geller et al. 
(2019) is to provide students opportunities 
to respond every 30 to 60 seconds. For 
some, this may not be intuitive, as explicit 
instruction is often viewed as strictly 

teacher-led, so it may be necessary to 
reframe one’s thinking around systematic, 
explicit instruction and begin to view it as 
an opportunity to engage in dialogue with 
students about their learning throughout 
the lesson cycle.

The third supporting practice that should 
be included within explicit instruction is 
the provision of frequent and immediate 
feedback. Feedback is critically important 
for students because it gives students a 
way to gauge their own progress, work 
through errors or misconceptions, and self-
correct (Hughes et al., 2022). Feedback 
should be provided in a neutral tone and 
in a timely manner to prevent students 
from practising incorrectly or perpetuating 
misconceptions. One common way to 
provide corrective feedback is to say, “Let’s 
look at that again …” then ask about a 
specific part of the problem in which there 
was an error or misconception. Moreover, 
it is important that the teacher establishes 
a classroom climate in which students feel 
comfortable and safe making mistakes and 
learning from their errors. 

Practice #4: Build Fluency

What is this practice?

Fluency, simply put, is doing mathematics 
easily and accurately. Fluency — specifically 
fact and computational fluency — builds on 
a foundation of number sense, conceptional 
understanding, strategic reasoning, and 
problem solving. Fluency is important 
in mathematics because it frees up the 
student’s working memory to be able 
to perform more complex, multi-step 
mathematics problems. Computational 
fluency is evident when students can 
demonstrate flexibility in the computational 
methods they choose, understand and 
can explain these methods, and produce 
accurate answers efficiently (National 
Council of Teachers of Mathematics 
[NCTM], 2023).  

What is the research?

Fluency is often misunderstood as being 
able to quickly compute mathematics facts, 
regardless of conceptual understanding 
(e.g., memorisation). But fluency is so 
much more that memorisation of maths 

facts. Teachers expect students to develop 
fluency (i.e., ease and accuracy) with 
counting, comparison, fractions, geometry, 
data analysis, measurement, and algebra, 
among other topics. When students have 
fluency with a foundational aspect of 
mathematics, that foundation is related 
to later mathematics performance. For 
example, Cirino et al. (2016) demonstrated 
that mathematics facts performance 
predicted computation scores. In other 
studies, researchers identified skill 
with operations as important for later 
mathematics, such as fractions or algebra 
(Geary et al., 201; Siegler, et al., 2012). 
Many students may develop mathematics 
fluency as they practise mathematics, but 
some students require additional practice 
opportunities to develop the same level 
of mathematics proficiency (Burns et al., 
2015). 

Mathematics facts are taught in the 
elementary grades and cover addition (e.g., 
4 + 3, 9 + 7), subtraction (e.g., 6 – 2, 
14 – 8), multiplication (e.g., 4 × 8), and 
division (72 ÷ 9). To be successful with 
mathematics facts, students must have 
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demonstrated proficiency with prerequisite 
skills of counting, knowledge of numbers, 
and understanding what numbers 
represent (NCTM, 2023). Mathematics 
fact retrieval serves as a foundation of 
more complex mathematical concepts 
and therefore teachers should incorporate 
fluency building activities into the scope 
and sequence of lessons daily (Burns et al., 
2012). Fuchs et al. (2021) recommended 
regularly including timed activities to build 
students’ fluency. This strategy should 
be used for mathematics topics that the 
student has already previously learned 
and increase in complexity as the student 
progresses through the curriculum. While 
this can include foundational mathematics 
fact fluency (e.g., 4 + 5), this also can 
include other mathematics concepts such 
as fractions, estimating, or place value. 

Further, fluency can be supported by using 
both efficient strategies and charting 
student progress. Students should be 
taught and reminded to use efficient and 
previously learned strategies. One such 
strategy includes the ‘counting on’ strategy 
(Powell et al., 2023). In this strategy, the 
student starts with the greater number and 
counts on with the other addends to get 
to the sum. Figure 9 shows the example 
4 + 3. The student would start at 4 as 
the greater number and count three more 
(e.g., 4…5, 6, 7) to arrive at the sum of 7. 
The same methodology can be applied to 
subtraction, where the student starts with 
the subtrahend and ‘counts on’ or up to 
the minuend. In the example, 10 – 4, the 
student would start at 4 and count to 10 to 
get the difference of 6. 

Figure 9

Fluency paired with charting progress can 
encourage students to remain focused 
and motivated. In this strategy, students 
record their scores over time on a chart or 
graph (Powell et al., 2023). Ambitious, yet 
attainable goals are set, and students are 
encouraged to progress towards that goal. 
Progress can be tracked individually or as 
a group depending on the needs or type of 
instruction. 

Figure 10

What does this look like 
in the classroom?

Here we focus on quick, daily activities 
aimed to build mathematics fact and 
computational fluency. Using flash cards 
that focus on a single skill can be an 
effective strategy to building fluency 
(Fuchs et al., 2010). As mentioned before, 
these single skills can be as simple as 
foundational maths facts. Figure 10 shows 
an example for addition flash cards. 
Students have one minute to answer as 
many cards as they can. At the end of 
the minute, students count the correctly-
answered cards then have another minute 
to try to beat their score. At the end of 
the second minute, students graph their 
highest score on a flash card graph (see 
Fig. 10).  

Students can also do flash card activities 
with more complex mathematics, like 
adding fractions or estimating (see Figure 
11 for a flash card activity in which 
students have to identify the fraction 
shown on each card). Teachers have 
flexibility in how students respond to flash 
cards. Students could respond altogether, 
through the use of a white board, hand 
gestures, or individually. It is important to 



  11 

ensure that students have time to discuss 
their answers and correct and explain any 
missed items. 

Figure 11

Another research-validated strategy 
for building fact fluency is Cover, Copy, 
Compare (Codding et al., 2011). In this 
approach, students look at a solved 
mathematics problem, they cover the 
problem up, copy the problem and solve it, 
and then compare their work to the original 
problem. Teachers typically create a sheet 
containing up to 10 single-skill problems 
and give the students 2 to 4 minutes to 
complete the activity. Figure 12 shows an 
example of Cover, Copy, Compare. 

For both fact and computational fluency, 
instruction accompanied by practice is 
key (Fuchs et al., 2009). Students should 
practise for a brief amount of time every 
day. This practice might be done with 
games or activities (Fuchs et al., 2005). 
When selecting games for practice, Russo 
et al. (2018) suggest games must engage 
students, be a balance of skill versus 
luck, emphasise the mathematics, allow 
for differentiation, and connect school 
mathematics to mathematics in the home. 
Practice with peers (Fuchs et al., 2014) or 
via technology (Nelson et al., 2013) may 
also be helpful for fluency practice. 

Figure 12
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Practice #5: Focus on Word Problems

problem solving that do have a strong 
research base: use of an attack strategy 
and a focus on the schemas of word 
problems. Regardless of the type of 
word problem, students need an attack 
strategy. An attack strategy is an easy-
to-remember series of steps students use 
to guide their approach to solving word 
problems (see Figure 13 for examples). 
Decades of educational research has been 
conducted on the use of an attack strategy 
and its effectiveness on improving word-
problem performance (e.g., Freeman-
Green et al., 2015; Krawec et al., 2012; 
Xin & Zhang, 2009; Woodward et al., 
2001). Attack strategies ensure that the 
main components of the word problem are 
attended to and that all steps in a word 
problem are completed (Powell & Fuchs, 
2018). Attack strategies commonly use 
acronyms to help students remember 
the word-problem strategy components. 
While the acronyms can make it easier to 
help students remember the components, 
teachers need to first teach each 
component of the acronym and then ensure 
continued use of the strategy (Powell & 
Fuchs, 2018). 

Figure 13

Another research-validated approach to 
word-problem solving, which is often used 
alongside an attack strategy, is a focus 

What is this practice? 

Word problems are text-based problems 
that students solve to show their 
mathematics knowledge. Word problems 
can be especially tricky for students 
given the myriad skills required. For 
example, success with word-problem 
solving involves: (a) reading a problem, 
(b) understanding the vocabulary in the 
problem, (c) understanding the content 
of the problem, (d) identifying a plan for 
solving the problem, (e) identifying the 
relevant information and ignoring irrelevant 
information, (f) performing the arithmetic, 
and (g) checking work for reasonableness. 

By solving word problems, students 
learn to apply mathematical principles as 
they work to solve increasingly complex 
problems. Additionally, by situating 
mathematics concepts in a word-problem 
context, students are encouraged to use 
and adapt strategies more flexibly to 
reach a ‘reasonable’ solution (Koedinger & 
Nathan, 2004). 

What is the research? 

Many teach word problems by defining 
their mathematical operation (e.g., 
addition problems) and linking key words 
(e.g., altogether means addition) to 
specific operations. These strategies often 
discourage mathematical reasoning and 
often lead to the wrong answer (Karp 
et al., 2019; Powell & Fuchs, 2018). For 
example, students are often taught the 
word altogether means to add. This, 
however, does not always prove to be true. 
Take this example: “Alice bought three 
bags of groceries. Each bag cost $15. How 
much money did Alice spend altogether?” 
In this example, students should not add 
3 and 15, but rather they should multiply 
the two numbers to get the product. This 
rule not only applies to the word altogether 
but also terms like more, fewer, left, 
each, double, share, and divide. In fact, 
in an examination of how often key words 
linked to operations help students solve a 
word-problem correctly, it is less than 10 
per cent of the time for multi-step word 
problems (Powell et al., 2022).

Helpfully, there are approaches to word-
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on schemas. A schema is the underlying 
structure of a word problem, and the 
schema is often based on the concept(s) 
emphasised in the problem. When students 
recognise the schema of the word problem, 
and they have a strategy for solving word 
problems with that same schema, it makes 
word-problem solving more accessible. 
Schema instruction has been identified as 
a research-validated practice for a variety 
of students (Cook et al., 2020; Kong et al., 
2021; Lein et al., 2020; Peltier & Vannest, 
2017). 

What does this look like 
in the classroom?

As mentioned, an attack strategy is an 
easy-to-remember series of steps students 
use to guide their approach to solving word 
problems. Look at some examples of attack 
strategies in Figure 13. As in SOLVE and 
UPSCheck, attack strategies will often use 
an acronym to help the student remember 
the strategy. Additionally, the attack 
strategy should include key components 
that students should do to complete the 
word problem. In UPSCheck, the strategy 
reminds the student to first, read the 
problem. Next, the strategy reminds the 
student to plan. This plan can be focused 
on the schema(s) of the word problem. 
Then, the student solves the problem. Last, 
the student checks their work. Whichever 
attack strategy is used should be explicitly 
modeled and students should be given 
many practice opportunities to see how 
the attack strategy can be useful for 
solving word problems. This can rely on 
think-alouds with the attack strategy (see 
Practice #3) with a focus on the vocabulary 
within each word problem (see Practice 
#1) and the use of representations (see 
Practice #2) to help students understand 
the meaning of different word problems. 
The ultimate goal is for the attack strategy 
to become innate so that students use it 
with fluency whenever they see a word 
problem. 

There are six word-problem schemas that 
are regularly seen in word problems across 
the elementary grades (see Figure 14). 
In the early elementary grades, students 
solve word problems that are additive (i.e., 
students will use addition or subtraction 
to solve the problems). Three common 
additive schemas include total, difference, 
and change (see Fig. 14).

In the total schema, parts are put together 
for a total (e.g., P1 + P2 = T, where P1 is 
part 1, P2 is part 2, and T is the total). For 
example, “Bronwyn made $45 on Saturday 
and $72 on Sunday. How much money 
did Bronwyn earn?” In this word problem, 
students are provided with two parts ($45 
and $72) and have to find the total. Total 
problems can also be presented with a 
total and students determine a part. For 
example, “Bronwyn made $117 over the 
weekend. If she made $45 on Saturday, 
how much did Bronwyn make on Sunday?” 
Many total problems feature more than two 
parts (e.g., three parts and a total or four 
parts and a total). 

Figure 14

The next schema type is called the 
difference or compare schema. In this 
type of word problem, greater and lesser 
amounts are compared for a difference 
(e.g., G – L = D, where G is the greater 
amount, L is the lesser amount, and D is 
the difference). In the difference problem 
in Figure 14, students compare Simone’s 
3,721 songs to Georgia’s 4,028 songs 
to determine the difference. Difference 
problems can also be written in which 
students have to identify the unknown 
greater amount or unknown lesser amount. 

Another common additive word-problem 
schema is the change schema. In this 
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In this paper, we described each of these 
research-validated practices in isolation, 
but often their use is overlapping with 
two, three, four, or five of these research-
validated practices used within the same 
instructional lesson. Teachers may also 
use other practices in their mathematics 
instruction. It is important to understand 
the research behind any practice, and 
question whether non-research-validated 
practices are worth the time and effort in 
the classroom. This is of particular concern 
for students who experience difficulty in the 
mathematics classroom and instructional 
time is precious.

To determine whether this suite of 
research-validated practices is helpful at 

schema, students work with an amount 
that either increases or decreases (e.g., 
ST +/–C = E, where ST is the starting 
amount, C is the change amount and E is 
the end amount). Some change problems 
feature an increase whereas others feature 
a decrease (such as the change problem 
in Figure 14). It is important to note that 
many change problems feature a start 
amount with two changes, and this is 
particularly true in the later elementary 
grades continuing into secondary school. 

As students move into the later elementary 
grades, three multiplicative schemas are 
prevalent. With multiplicative schemas, 
students may multiply or divide to solve 
the problems. Three common multiplicative 
schemas include equal groups, comparison, 
and combinations. 

In equal groups problems, groups are 
multiplied by number in each group for 
a product (e.g., G × N = P, where G 
represents groups, N is number in each 
group, and P is product). For example, 
“Rhys bought 6 boxes of crayons with 24 
crayons in each box. How many crayons 
does Rhys have?” In this example, there 
are 6 groups (G) with 24 in each group (N). 
As with other schemas, the unknown may 
be the groups, the number in each group, 
or the product.  

In the comparison schema, a set is 
multiplied by a number of times for a 
product (e.g., S × T = P, where the S 

stands for set, the T for times, and the P is 
the product). In the problem in Figure 14, 
the set is ½ and the number of times is 6. 
Most often with comparison problems, the 
unknown is the product. 

Another multiplicative example is 
the combinations schema. With this 
schema, students identify all the possible 
combinations give two sets (S1 × S2 = P, 
where S1 is the first set, S2 is the second 
set, and P is the product). In the problem 
about Imogen (see Figure 14), Imogen 
could create 15 different outfits with 
three pair of pants and five sweaters. As 
students move into late-primary grades or 
early secondary, they start to work on word 
problems related to ratios and proportions, 
which are often considered additional 
schemas (Jitendra et al., 2009; Jitendra et 
al., 2013). 

Across all schemas, teachers should 
provide explicit instruction about each, 
giving ample time to practise setting up 
and solving word problems within the 
schema. It is often beneficial to model and 
practise one schema for several lessons or 
weeks before introducing a new schema 
(Powell & Fuchs, 2018). As students learn 
new schemas, they should engage in 
activities where they practise discriminating 
between or among schemas (e.g., “This 
is a difference problem, and I know that 
because the problem asks to compare two 
amounts”).

Conclusion

improving the mathematics understanding 
and outcomes for students, teachers should 
collect data regularly from students. This 
data, whether from formal or informal 
sources, should be analysed often to 
determine whether mathematics instruction 
should continue as planned or whether 
adaptations are necessary to best meet 
the needs of students. Teaching and 
instructional practice should be responsive 
to students’ needs. The set of research-
validated practices in this paper provides 
an evidence-based starting point for 
mathematics instruction but may need to 
be adjusted based on data collected about 
student response. 
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